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Abstract: An Analyze is performed to study the hypersonic flow over wave riders as conical bodies with
different cross sections and longitudinal curvatures at different angles of attack. The calculation of lift to drag
ratio of these cross sections and comparison of them with cones with no longitudinal curvature and different
longitudinal curvatures is major subject in this research. Perturbation expansion is considered for flow variables
and is used in terms of € as a perturbation parameter and a as a attack angle. In hypersonic flow, the boundary
layer is very thin and viscous effects are negligible and flow is assumed to be adiabatic. Governing equations are
conservation of mass, momentum, energy (in two forms of entropy and enthalpy), and equation of state. The
zeroth-order approximation of hypersonic conical flow obtain by nonlinear asymptotic theory is chosen as the
basic-cone solution for expansions. In this analysis, the complicated governing equation of flow field can be
simplified by an appropriate approximation scheme, and the first-order approximations of properties are derived.
With small angle assumption final equation is reduced to the simple form of radial velocity. With solving this
equation all the flow variables for the shock layer flow field can be evaluated. As a major parameter in design of
aircrafts and space vehicles the lift to drag ratio is calculated. Results show changing cross section from circle to
squirrel (rounded square) increases the lift to drag ratio. Also presence of longitudinal curvature effect increases
this ratio. These results indicate that studied cones can be used effectively to efficiently integrate propulsion and
aerodynamic requirements for a variety of hypersonic vehicles.

Keywords: Hypersonic flow, perturbation method, longitudinal curvature, wave rider.
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1. Introduction

One way for studying the aerodynamics of
these configurations is by means of conical
bodies. These configurations prepare suitable
flow fields and aerodynamic properties. The
flow past conical bodies has been studied for
many different cases. Perturbation method is
widely applied to study of flow on conical
bodies. Stone [1] applied the power series
expansion for a small attack angle and obtained
the first- and second-order perturbation. The
analysis is similar to that of Doty and
Rasmussen [2] for obtaining solutions for flow
past circular cones at small angle of attack.
Starting from the zero-order approximation of a
hypersonic conical flow obtained by nonlinear
asymptotic theory [3] is adopted as the basic-
cone solution for the outer expansion.

The purpose of the present work is to
compare the lift to drag ratio for different cross
sections analytically. The results will be useful
in increasing the lift to drag ratio for aircrafts,
missiles and space vehicles by changing cross
section and longitudinal curvature.

2. Formulation and governing equations

Normal spherical polar coordinates r, 6 and
¢ are used in this study as shown in Fig. (1), 0
is the polar angle and ¢ is the azimuth angle. In
this perturbed flow, the next expression
represents the velocity vector:

— A A A

V =ue+veo+Wweo (1)

The basic cone body is perturbed by the
relation of:

0, =1-¢, (%)m cosng] ()

Where 9§ is the semi-vertex angle of basic
cone, | is cone length; € is a small perturbation
parameter. Longitudinal curvature is denoted by

(r/)™ where m is integer value and with
increasing of it longitudinal curvature increases
as shown in Fig.(2). When m = 0, it represents a
cone has no the longitudinal curvature. Cross
section effects are represented by cos(no) that n
is 0, 2 and 4 for circular, elliptical and squirrel
cross section, respectively that are seen in
Fig.(3). The shape of the corresponding shock
wave is expressed in a similar way as:

0, =8[1-¢, G, ()" cosng+o(z)] 3)

Where G,, shows the shock-perturbation
factor, and ¢ =B/9 is the ratio of shock angle to
body angle for the basic cone. Here we assume
the flow, outside the viscous boundary layer, is
inviscid, adiabatic, and steady. Thus the
governing equations expressing conservation of
mass, momentum, and energy (in both entropy
and enthalpy forms) can be written as:

div(pV) =0 (4)
p[V(VTZ) ~VxeurlV]=-Vp (5)
VVs=0 (6)
Y op wAview 7)
y-1p 2

e =Ln(?) —Lac ) ®)

\ r r

Where, S,, p, and p, are suitable reference
quantities, C, and vy are specific heat capacity at
constant volume and heat -capacity ratio,
respectively. We changed the shape of basic
cone by perturbation variables, thus the
conventional spherical coordinate system is not
valid in the perturbed cone and the perturbed
shock. It is necessary to establish a new
coordinate variable 6, = 0,(r, 0, ¢) to exchange
the polar angle 0 between the cone surface and
shock layer by definitions. 6, is such that:
0,-8_ 0-06.(1,9) )
B-5 6,-6.(r,0)
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When 0 = 0.(r,9), is located on the actual cone
surface, it is seen that the new variable will be
0, =6, when 0 =04(r, ¢) it will be 6, =p. We
know that longitudinal curvature is proportional
to the &, assumed to be small. Thus, we
suppose the first order expansion for a
perturbed flow can be expressed as [4].

u=u,(8,)+eu,(8,)r/)" cos(ng) +o(s”) (10)
v=v,(0,)+ev,(0,)r/1)" cos(nd)+o(e”) (11)
w=gw,_ (0,)(r/1)" sin(n) +o(e) (12)
p=p,(8,)+ep,, (0,)(t/1)" cos(nd) +o(e’)  (13)
p=p,(0,)+ep,,(0,)(r/)™ cos(nd) +o(s”)

(14)

s=s,(0,)+es, (0,)(r/)" cos(nd)+o(e”)  (15)

In these expansions zero order functions u,(0,),
Vo(0o), Wo(0o), Po(Bo),  Po(0o), and s4(6,), are
the solutions of basic cone problem. In this
study, the zero order solution from [3] is
adopted as the basic solution and they for the
perturbed flow field are:

u,(0,)=V, 1—i(i+1 gz)] (16)
82
v,(0,)=-V,0, (- 62) (17)
200 L0 Ly 1=l 8 B )
a, TOO 2 eO eo
P.(0,) _p, (B k; 8 &
o o = o 1 — e
b, b L ame T et (19)
B>
11192)]
62 2
E—°zl+2k[ p;’)(B)(l %)] (20)
Where
g =P o L 1)
P, (B) c
And czgg[%l%]m, k,=M5  (22)
3

3. The perturbation of boundary condition

The body surface 0, =0, boundary condition
can be determined by the tangency of flow
across the body surface as:

V.A, =0 (23)

Where, 71, is the unit vector that is outward

normal from the cone surface and is defined by:

f, =erdf'(r/l)cos(nd)é, +¢&, —

1 (24)
— [85 f(r/Hn sin(n(]))]éq)
sind

When we substitute the Egs. (10) and (11) into
the (23), zero and first order is obtainedas:

v,(8)=0 and v _(8)=-mV,3 (25)

With the equations of mass and tangential
velocity conservation, velocity components can
be calculated at the shock 0= f:

VwXﬁSZVSXﬁS (26)
p.V, 0, =pV. 0,

Substituting the expressions (11-15) into
above equations the zero and first order results
for boundary conditions can be obtained as
follows:

5B _ op (27)

v:/(f) _ ¢ sin (28)

u, (B) =8V, 0G, (1 + Ll (29)

Ya® :SGmcosB[(l-km){Ly_l) ~g-mp G0
V., y+1

w,(B)=n(, -1)5G,V, (€Y

SaB)=s. 1 PuB) (32)

C

v 0
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s (B)=nB) L Sn) (33) o rmu Yoy 4 Pem_ 90,
P, & Vo PoVo do, 41)
umo, —MOuPe _
Where: PoVo
& —25cotB(l-G,)(E, - y-1 ) (34) Insefang Eq. (39) into (41), generates v,, as
y+1 a function of u,, and 0,,,

3.1 Energy Equation

Substitution of expansions into equation (8) and
separation of various orders of perturbation lead
to:

s, =0 (35)
s, +mee s, =0 (36)
de, v,

3.2 Pressure and Density

When expansions are substitute into the
Bernoulli equation (7) and state equation (8),
the first order perturbation will be:

2

ao 1 (pﬂ'l - pl"l]) + uoum + VOVH’I = O (37)
y—

P~ VP =S (38)

The first order perturbation for pressure p,

and py, are in the form:

P (e ) —_ Y(uoum + Von) _ Sm (39)
e a, (v-1)

__(Quu, +vevy) sy 40

Pm(®,) 2 oD (40)

The r, 6 and ¢ momentum equations are
expanded to the zero and first order using
expansions (10) to (15):

First order perturbation for r-momentum
equation (4) can be written as:

vV, = ! dum7 m is -V o4+
" 1+m d0, y(y-Dv, ™ °de, (42)
mdv‘, 0]
do

o

In this study we introduce new variables for
simplification and to eliminate d0,/d0,. It is
accomplished by inserting the following
velocity transformations [4]:

u,(6,)=u,-6,(0,)v,(6,) (43)
* — _ dv,(9,) 44
v, (0,)=v, 9,,1((90)7deo (44)

Inserting new variables into the Eq. (42), yields,

* 2
oo L moal (45)
m+1d6, vy(y-1 v,

3.3 Azimuthal Velocity Component

The first order perturbation of azimuthal
velocity is obtained via ¢ momentum equation.
By substituting Eq. (39) in the first order
perturbation terms it yields:

nﬁum +(1+ m)u—"sin 0, +w,cotO +
v, v, (46)
2
1 a—"sm -nf, v, -nO u =0
Yy =Dv,

;o
w, sin@  +

Taking the new transformation (43) and (44)
and substituting Eq. (45) into expression (46)
generates the first order azimuthal perturbation
as a function of u*m:
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uf)’+&((l+m)wm sinf, +

" ' m+l v, ¢ 47)
a’ 1
m sITI
y(y=Dv, 1+m

Integrating the above equation gives the
azimuthal velocity perturbation as a function of

*
u .

3.4 Continuity Equation
The zero order perturbation for r and 0
momentum equations yields respectively,

vi-ulv, =0 (48)

—pa(—2u—°—00t60 —&):0 (49)
v v

o o

Adding zero order of r and 6 momentum into
continuity equation (4), the zero order
expansion of this equation can be written as:

2 2
(1=2)y' +vocot, +(2—~2)u, =0 (50)
a a;

o

We must find the expression of azimuthal
velocity perturbation in terms of u’,. Adding
the azimuthal velocity perturbation from
integrating the expression (47) and substituting
the zero order of r and 8 momentum and
expression (45) and Egs. (39-40) into continuity
equation (4), the zero order expansion of this
equation can be written as:

[(1-B)cot0, +(1+m) 2]y +[(2+m—c)—
- B (51)

u, v, du n
Zofu, +(1-A —“———+ =
]u d-4) 0, a’ do, sin0, Wi
v L1 dlp,v,) de,

o

sin“0, " p, do, do,
With:

A0,)=-< (52)

d
B(0,)=tan6, [ ( \\)_E(ano)_ (53)
2
2 = g0, (Lna )]
v - I du, m ﬁ . d6m+
" lem-do, y(y-Dv, " °do, (54)
meg, )
do,

By incorporating changed variables into Eq.
(51) and eliminating the term (md(p,v,)/p,d,),
conservation of mass equation can be written:

*

o+ [(-B)coto, +(1+m)%]v; -

0 0

U, vy
2
a

o

(35)

=0

24+4m+C s
9 +[@2+m )mao] *imo

4. Approximation shame and solution

The analysis can be simplified even more by
the introducing of another variable in the form
of:

2
u, =u, - je° &smde (56)
¢ y(y =Dy,

By inserting this new variable into Eq. (45), the
following expression is obtained:

v = 1 du (57)
' 1+m do,

The variation in the integral term in Eq. (56)
can be treated as constant, because the change
in a,’(,), from the minimum value at the shock
to its largest value at the body is always small,
substituting Eq. (36) into Eq. (56), the integral
can be evaluated, and Eq. (56) can be written in
the form of:

a2
C=u, +—2>—s (58)
v(v = Du,
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Applying this new variable into ¢ momentum,
Eq. (47), the azimuthal component of velocity
can be expressed as follows:

.
w n O u

m _ m

V.5 1+msin0, V.5

©

noG,, (&, -1)° (1 1 (59)
sin@, /5 1

Substituting Egs. (58) and (59) into continuity
Eq. (55), it takes the following form:

(1—A)du—m+[cot90(l—B)—M]du‘“ +(1+m)
do, al " do

2 ’ (60)
[(@-C4m)-mYe 10 1y Iom
aO

1+m 0’ _y(y—l)

16(1+m)

2
a
2-C+m)—s_+V
( )—*S,, ST

o

G 06, - 1>2(%)'*'“

Which is a single linear second-order ODE for
u. , for small values of angle, it reduced to[4]:

- - )
%+L%_(C;+n2 =H,(0,) (61)
de, 6, de, 0;
where,
n’(1+m) o1
H_(6,)= V. 6G_(&, —1)*(2)"™ (62)
m( o) ei/sz wG m(E.:o ) (I)
C.=n/5 (63)
_ m(1+ m) (64)
P hi@yrar

The homogeneous solution for Eq. (61) is:

(“V:(B?m G [ALL(LO+BK,(0LO] (69

A particular solution must be added to
Eq.(65) to get the complete the solution:

(S, 10,0 ek, 0,02 -

vV, 5°
H (Q) dc

(66)
K,(,0[ ¢1,00,0-m

The X,,(¢{ and Y,,(¢) are found as:

X, (©) = 0’1+ m)o(E, - DZLQM(SW (67)

Y, (©)=n*1+m)o(&, -1) FK NUNS) (1)l+m (68)

The general solution for Eq. (61) is:

u(©)
V.ol L (A, 0G,[A, + X, O]+ (69)

K, (,0G,[B, ~Y,(©)]

Substituting the solution (69) into Eq. (57), vy
is obtained as:

Va@ _ M
T A GO0, + X, @1 (70)

K, (A, 0IB,, = Y, (O}

where, I'4(2,¢) and K'4(2,¢) are derivatives of
14(2'1714? and K4(ﬂ'mg

The boundary conditions can be written in

sk sk
terms of u,, and v, as:

“:\(2;(’) = (1+m)c&,G,, (71)
Va(=0) _ 2(Y 1) _
V.o =G, {l+m)[———=-&]-m}+ 72)
% dVo (CJ — G)
vV, de,
L (Sl S (73)
V.5

The above shock boundary conditions are
substitute into Egs. (69) and (70), respectively
to solve 4, and B :

A,=N,-X,(=0) (74)
B,=Q,+Y,(=0) (75)
where:
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_—(mjo, Ay K’ (h, )um(C o) _
"G l+m (76)

m x:

N

O

1 u (E=0) I,(x,0) N (77)

O K )G, V. KoOoo) "

Substituting the surface boundary condition
(73) into Eq. (70), the value of shock
perturbation parameter can be obtained as:

G, - I+m v (£=1) (78)
AL A, +KL(2,)B,) V.8

To achieve a complete solution for flow over
a conical body at small angle of attack another
perturbation expansion should be written for
flow variables in which « (angle of attack) is
the perturbation factor,

u(0,¢,0) = u,(0) + o, (0)cosdp +o(a’) (79)

v(0,,0) = v () + av, () cos ¢+ o(a’) (80)
w(0,4,0a) = aw,(0)sind +o(a’)
(81)

p(6,9,a) = p,(6) + ap,(0) cosp+o(a”) (82)
p(6,0,0) =p,(0) +op,(6) cosd+o(a’) (33)
s(0,9,0) =s,(0) + as,(0)cos d +o(a’) (84)

The parameters with index 2 are related with
flow over circular cone with angle of attack. In
this case the equation of the body is:

0, =5+oacosh+o(a’) (85)

Substitute the perturbation expansions with
respect to ¢ in the governing equations, and
separate zero and first order terms ing , two
systems of equations are obtained. The
boundary conditions for first order can be
obtained as:

u,(B) =8sinp(1-G,(1-§,)) (86)
u} (B)=—-3G, V', (B)+8¢, cosP(l-g,)-&,sinp  (87)
v,(8)=0 (88)

Where G, represents shock perturbation
parameter for flow passes with angle of attack
on circular cone. The second system of
equations leads to the following ODE with
respect to u;.

u;+u;cote+uz(2_ L jz_EHo@) (89)

sin’@ ¥ sin’0

For small angles the above ODE has a
solution of:

“S(Z) G,Z-G, — +G13R (90)
drR
e ):G11+G12?+G13a (01)
where
L
Gy =—+ = - 92)
26t y+1 (y+1 26 2)

120 gt 20, e)y (93)

Gn=Gm e ) e
Gy = (1_g32)J -5 ©4)
c Ny
s
R:I—E z- -1 +2Z +1 o (95)
4Jor-1) 42 Joro1
In which:
c=c+Voi-1, z=z+z* -1, z=0/6
and:
_ 20° (96)
(6® -1)(2c” +y-1)
_ 206> ~1+(y-DIng] 97)
(6> =D(Q2c* +y-1)
Fl:@ (98)

5. Calculating lift and drag forces
For a finite length of cone, the pressure force
as shown in Fig. (4), is given by:
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) L (1
F=—[[p(0c)A, ds (99) b’+a

dz
ds=Rdrd¢=ztand oy d¢ (100) In the left hand side of Eq. (105) the Taylor

where, R, equals to the radius of a circle.

For pressure coefficient the perturbation
expansion is defined by:

I'im C
Cp :CPO +£CPm(I) COSH¢+QCP1 COS¢+ (101)

o(e?,a’, a)
The expressions for lift and drag forces are:

dN=-1/2p,V2C, tanScos pdzdg (102)

dD=-1/2p,V>C, tan’ 8zdzd¢ (103)
L_ oGy (104)
D 2C,,tand

For comparing the lift to drag ratio in
different cross sections first the relation
between o and the shape of cross section should
be found. In rectangle Cartesian coordinates, an
elliptic cone is represented by:

)
¥}

N
1§}

_z (105)

mw‘x
%[

where Cartesian to spherical transforms are:

x =rsinBcos¢ (106)
y =rsin0sin¢ (107)
z=rcos0 (108)

Substituting Egs. (106) to (108) into Eq. (105)
the following relation is obtained:

tan0 =200, (109)
J1+ecos2d

where;

tan0 , = /2ab =b+l-e (110)

expansion about £=0 is written and in right
hand side the Fourier series are substituted. For
different values of e calculations shows that
Fourier series coefficients except for a; and a,
are negligible, so the following equation is
achieved:

tan —g(1 + tan” §) cos 29 = tan O,

(112)

(azo+azcos2¢)
where;

1 ¢n 1

B (113)
Ol Wy et

1 cos2d (114)

= —==2_4
2= ey

It is obvious that for a circular cone, e=0 and:
Od=band £6=0 (115)

Also elliptical cone with longitudinal curvature
can be written as:

[}

x’ N
aZ

_z (116)
1

%)<

In spherical coordinate it is written as:

tan’ 0, (117)
1(1+ecos2¢)

rtan0sin 6 =

And using Taylor expansion and Fourier series,
the following relation is obtained:

. I'im . 2
r(tandsin 6 — (=)™ cos 2¢sin 8(2 + tan~ &
( (l) ¢ sin &( ) (118)

2
tan” 0,

a, )
=——m —(—+a,cos2d)tan” O
1(1+ecos’ ) (2 : » "
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Comparing the two sides of Eq. (118) the
following expressions are achieved:

a7"=rsin8tan8 (119)
a +1/a2 88(r)‘“a /2
T a4y = 27 T o
tan & = 1 (120)
e,

In rectangle Cartesian coordinates, a cone
with squircle cross section is represented by:

4
X
4

+ L ! (121)
Z

N

Substitution of the Cartesian to spherical
transforms in Eq. (121) gives:

tan 6 :7\5R (122)
" (B+cosdp)’

Using Taylor expansion about ¢ =0 for the
left hand side of Eq. (122) and writing Fourier
series for the right hand side, the following
relation is obtained:

tan & — (1 + tan” 8) cos 44 =a—2"+a4 cos4p  (123)

In comparison with a,, a, the other coefficients
of the Fourier series are much smaller and
hence negligible. Comparing the two sides of
Eq. (123) the following relations are achieved:

tansz%o (124)
Y (125)
1+(‘1‘—°)2
do (126)
'[ (3+cos4¢)/

R (127)

1
a,=—| cos4¢p———d¢
T L 3+ cos4¢)%

In rectangle Cartesian coordinates, a cone
with squircle cross section and longitudinal
curvature can be represented by:

4 4
x ¥y _z (128)
R* R* 1

Substitution of the Cartesian to spherical
transforms in Eq. (128) gives:

. r m
sin* 0, i sin* §(1 - S(I) cos 49) (129)

cos B¢ cosd(1— 8({)“‘ cos 4¢)

Using Taylor expansion about €=0 for the
left hand side of Eq. (129) and writing Fourier
series for the right hand side, the following
relations is obtained:

fan s - —2e TVa T16A7 \/16*\,A:8(§)ma7o (130)

2A
Y — (131)
713+ cos4d)
A R, (132)
*1(3+cos4o)

6. Results and discussion

This analysis accounts the effects of cross
section and longitudinal curvature by means of
parameters that were named by n and m
respectively. The aim of the present work is to
improve lift to drag ratio by changing the cross
section of the conical body. Using Fourier
series a relation between 6 and shape of the
cross section of the body is obtained for each
case. Figs. (5) and (6) represent the zero and
first order of pressure coefficients as a function
of ks (ks=M..0). Figures show these coefficients
are constant in hypersonic limit. Fig. (7) shows
the lift to drag ratio for different cross sections
as a function of ks in a=4 (o is attack angle). A
careful examination of Fig. (7) it reveals that
the longitudinal curvature effect increases lift to
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drag ratio, also changing cross section from a
circle to an ellipse and then to a squircle
increases this ratio. For ks — 0, this ratio tends
to zero, also as ks —og a hypersonic limit is
achieved. Increasing in attack angle can be seen
in Fig. (8). The figure presents with increasing
of attack angle the lift to drag ratio increases.
Fig. (9) shows lift to drag ratio for different
longitudinal curvature. It can be shown with
increasing of m the longitudinal curvature (as
shown in Fig. (3)) and then this ratio increases.
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Fig. (5) Cp,/6” versus k;,

1



41 F
405 } i
— a
Cu I
) v !
a b
! I
by
L
Yo
]
395 p1 oy
L
o
b
'
'y
39 F'
Y
b
Yy
385 L ' L L L L A L A L 'l L L L L
0 5 10 kﬂ 15 20
Fig. (6): Cp,/d versus k.
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Fig.(7): Lift to drag ratio of ks for different cross sections in a=4.
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Fig.(8): lift to drag ratio of ks for different cross sections in 0=8.
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Fig. (9): Lift to drag ratio of ks for m =1, 2 (wlc: with longitudinal curvature).



