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Abstract: An Analyze is performed to study the hypersonic flow over wave riders as conical bodies with 
different cross sections and longitudinal curvatures at different angles of attack. The calculation of lift to drag 
ratio of these cross sections and comparison of them with cones with no longitudinal curvature and different 
longitudinal curvatures is major subject in this research. Perturbation expansion is considered for flow variables 
and is used in terms of ε as a perturbation parameter and  as a attack angle. In hypersonic flow, the boundary 
layer is very thin and viscous effects are negligible and flow is assumed to be adiabatic. Governing equations are 
conservation of mass, momentum, energy (in two forms of entropy and enthalpy), and equation of state. The 
zeroth-order approximation of hypersonic conical flow obtain by nonlinear asymptotic theory is chosen as the 
basic-cone solution for expansions. In this analysis, the complicated governing equation of flow field can be 
simplified by an appropriate approximation scheme, and the first-order approximations of properties are derived. 
With small angle assumption final equation is reduced to the simple form of radial velocity. With solving this 
equation all the flow variables for the shock layer flow field can be evaluated. As a major parameter in design of 
aircrafts and space vehicles the lift to drag ratio is calculated. Results show changing cross section from circle to 
squirrel (rounded square) increases the lift to drag ratio. Also presence of longitudinal curvature effect increases 
this ratio. These results indicate that studied cones can be used effectively to efficiently integrate propulsion and 
aerodynamic requirements for a variety of hypersonic vehicles.  
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با استفاده ران با شکل و زاویه حمله متفاوت مقایسه نسبت نیروي برا به کشش براي موج

  از روش پرتوربیشن

  ابهر، دانشگاه آزاد اسلامی واحد گروه مهندسی مکانیکمهندسی، فنی دانشکده  -نسرین شیخی

 دانشگاه فردوسی مشهد -دانشکده مهندسی مکانیک -اصغر بهادران رحیمی

   

بوده جانبی این پرتابه داراي انحناء در سطح. استانجام شدهدر حال حرکت داخل یک لوله شوك  یصوتفرادر این مقاله تحلیلی بر روي پرتابه  :چکیده

در . شوندمخروط پایه ایجاد می عنوانبه ی شکلاین سطوح مقطع توسط اغتشاش مخروط. شوددایره، بیضی و مثلث بررسی می ؛و با سه سطح مقطع

تقریبی تحلیلی معادلات  روشیک کاربرد با در این پوهش . استاستفاده شدهروش پرتوربیشن  از زاویه شوكو پارامتر شوك  تعیینبراي این مطالعه 

کنواخت در لایه به صورت ی ي راحل تحلیلی معتبر ،با استفاده ازبسط پرتوربیشن که سعی براین استشوند و میمیدان جریان ساده  برحاکم پیچیده 

طراحی براي لوله شوك  نظرهایی از از میدان جریان اغتشاشی زاویه شوك مناسب را تولید کرده و مزیت اقتباس یافتههاي پرتابه. دست آوردشوك به

 شود با افزایش نیم زاویهمی مشاهدههمچنین . دهندمقطع را بر زاویه شوك و پارامتر شوك نشان میاثر سطح ،دقیق نتایج یبررس. آورندفراهم می

ارائه روش موثري را ها و شلیک گلوله جریان در شتاب دهنده و درك میدانبررسی براي  ، همچنیناین مطالعه. یابد، زاویه شوك افزایش میمخروط

   .ایجاد کند یصوتفرابراي پرتاب یک پرتابه را  یمناسبطراحی که ممکن است  نمایدمی
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1. Introduction 

One way for studying the aerodynamics of 

these configurations is by means of conical 

bodies. These configurations prepare suitable 

flow fields and aerodynamic properties. The 

flow past conical bodies has been studied for 

many different cases. Perturbation method is 

widely applied to study of flow on conical 

bodies. Stone [1] applied the power series 

expansion for a small attack angle and obtained 

the first- and second-order perturbation. The 

analysis is similar to that of Doty and 

Rasmussen [2] for obtaining solutions for flow 

past circular cones at small angle of attack. 

Starting from the zero-order approximation of a 

hypersonic conical flow obtained by nonlinear 

asymptotic theory [3] is adopted as the basic-

cone solution for the outer expansion. 

 

The purpose of the present work is to 

compare the lift to drag ratio for different cross 

sections analytically. The results will be useful 

in increasing the lift to drag ratio for aircrafts, 

missiles and space vehicles by changing cross 

section and longitudinal curvature. 

  

2. Formulation and governing equations  

Normal spherical polar coordinates r, θ and 

 are used in this study as shown in Fig. (1), θ 

is the polar angle and  is the azimuth angle. In 

this perturbed flow, the next expression 

represents the velocity vector: 

 









 eweveuV r           (1) 

 

The basic cone body is perturbed by the 

relation of: 
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Where δ is the semi-vertex angle of basic 

cone, l is cone length; ε is a small perturbation 

parameter. Longitudinal curvature is denoted by   

(r/l)m where m is integer value and with 

increasing of it longitudinal curvature increases 

as shown in Fig.(2). When m = 0, it represents a 

cone has no the longitudinal curvature. Cross 

section effects are represented by cos(n) that n 

is 0, 2 and 4 for circular, elliptical and squirrel 

cross section, respectively that are seen in 

Fig.(3). The shape of the corresponding shock 

wave is expressed in a similar way as: 
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Where Gm shows the shock-perturbation 

factor, and  =/ is the ratio of shock angle to 

body angle for the basic cone. Here we assume 

the flow, outside the viscous boundary layer, is 

inviscid, adiabatic, and steady. Thus the 

governing equations expressing conservation of 

mass, momentum, and energy (in both entropy 

and enthalpy forms) can be written as: 
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Where, Sr, pr, and r are suitable reference 

quantities, Cv and  are specific heat capacity at 

constant volume and heat capacity ratio, 

respectively. We changed the shape of basic 

cone by perturbation variables, thus the 

conventional spherical coordinate system is not 

valid in the perturbed cone and the perturbed 

shock. It is necessary to establish a new 

coordinate variable o = o(r, θ, ) to exchange 

the polar angle  between the cone surface and 

shock layer by definitions. o is such that: 
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When  = c(r,), is located on the actual cone 

surface, it is seen that the new variable will be 

o =, when  =s(r, ) it will be o =. We 

know that longitudinal curvature is proportional 

to the m assumed to be small. Thus, we 

suppose the first order expansion for a 

perturbed flow can be expressed as [4]. 
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In these expansions zero order functions uo(o), 

vo(o), wo(o),  po(o),  o(o), and so(o),  are 

the solutions of basic cone problem. In this 

study, the zero order solution from [3] is 

adopted as the basic solution and they for the 

perturbed flow field are: 
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3. The perturbation of boundary condition 

The body surface o =, boundary condition 

can be determined by the tangency of flow 

across the body surface as: 
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

        (23) 

 

Where, cn̂  is the unit vector that is outward 

normal from the cone surface and is defined by: 
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When we substitute the Eqs. (10) and (11) into 

the (23), zero and first order is obtainedas: 
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With the equations of mass and tangential 

velocity conservation, velocity components can 

be calculated at the shock   : 
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Substituting the expressions (11-15) into 

above equations the zero and first order results 

for boundary conditions can be obtained as 

follows: 
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Where: 
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3.1 Energy Equation 

Substitution of expansions into equation (8) and 

separation of various orders of perturbation lead 

to: 
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3.2 Pressure and Density 

When expansions are substitute into the 

Bernoulli equation (7) and state equation (8), 

the first order perturbation will be: 
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The first order perturbation for pressure pm 

and m are in the form: 
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The r, θ and  momentum equations are 

expanded to the zero and first order using 

expansions (10) to (15): 

First order perturbation for r-momentum 

equation (4) can be written as: 
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Inserting Eq. (39) into (41), generates vm as 

a function of um and θm, 

 

]
d

dv
m             

d

d
vs

v

a

)1(

m

d

du
[

m1

1
v

m

o

o

o

m
om

o

2
o

o

m
m














       (42) 

 

In this study we introduce new variables for 

simplification and to eliminate dθm/dθo. It is 

accomplished by inserting the following 

velocity transformations [4]: 
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Inserting new variables into the Eq. (42), yields, 
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3.3 Azimuthal Velocity Component 

The first order perturbation of azimuthal 

velocity is obtained via  momentum equation. 

By substituting Eq. (39) in the first order 

perturbation terms it yields: 
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Taking the new transformation (43) and (44) 

and substituting Eq. (45) into expression (46) 

generates the first order azimuthal perturbation 

as a function of u*
m: 
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Integrating the above equation gives the 

azimuthal velocity perturbation as a function of 

u*
m. 

 

3.4 Continuity Equation 

The zero order perturbation for r and θ 

momentum equations yields respectively, 
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Adding zero order of r and θ momentum into 

continuity equation (4), the zero order 

expansion of this equation can be written as: 
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We must find the expression of azimuthal 

velocity perturbation in terms of u*
m. Adding 

the azimuthal velocity perturbation from 

integrating the expression (47) and substituting 

the zero order of r and θ momentum and 

expression (45) and Eqs. (39-40) into continuity 

equation (4), the zero order expansion of this 

equation can be written as: 
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By incorporating changed variables into Eq. 

(51) and eliminating the term (md(ovo)/odo), 

conservation of mass equation can be written: 
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4. Approximation shame and solution 

The analysis can be simplified even more by 

the introducing of another variable in the form 

of: 
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By inserting this new variable into Eq. (45), the 

following expression is obtained: 
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The variation in the integral term in Eq. (56) 

can be treated as constant, because the change 

in ao
2(o), from the minimum value at the shock 

to its largest value at the body is always small, 

substituting Eq. (36) into Eq. (56), the integral 
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Applying this new variable into  momentum, 

Eq. (47), the azimuthal component of velocity 

can be expressed as follows: 
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Substituting Eqs. (58) and (59) into continuity 

Eq. (55), it takes the following form: 
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




(60) 

 

Which is a single linear second-order ODE for 
**

mu , for small values of angle, it reduced to[4]:   

 

)(Hu)
n

C(
d

du1

d

du
om

**
m2

o

2
2
m

o

**
m

oo

**
m 








      (61) 

 

where, 

 

m12
om22

o

2

om )
I

1
()1(GV

/

)m1(n
)(H 

 



       (62) 

 /C mm
         (63) 

]
a/)(a

)m1(m
[

22
o

m




          (64) 

 

The homogeneous solution for Eq. (61) is: 

)](KB)(IA[G)
V

)(u
( mnmmnmmH2

**
m 







      (65) 

  

A particular solution must be added to 

Eq.(65) to get the complete the solution: 

























1

m
mnmn

1

m
mnmnP2

**
m

d
V

)(H
)(I)(K

d
V

)(H
)(K)(I)

V

)(u
(

      (66) 

 

The Xm() and Ym() are found as: 

 











1

m1mn2
o

2
m )

I

1
(

)(K
)1()m1(n)(X    (67) 











1

m1mn2
o

2
m )

I

1
(

)(K
)1()m1(n)(Y   (68) 

 

The general solution for Eq. (61) is: 

 

)](YB[G)(K

)](XA[G)(I
V

)(u

mmmmn

mmmmn2

**
m









      (69) 

 

Substituting the solution (69) into Eq. (57), vm
* 

is obtained as: 

 

)]}(YB)[(K

)](XA)[(I{G
m1V

)(v

mmm4

mmm4m
m

*
m















      (70) 

 

where, I4(m) and K4(m)  are derivatives of 

I4(m) and K4(m). 

 

The boundary conditions can be written in 

terms of **
mu  and **

mv as: 

 

mo2

**
m G)m1(
V

)(u








        (71) 

o

om

om

*
m

d

)(dv

V

G

}m]
1

)1(2
)[m1{(G

V

)(v

















    (72) 

)2m(
V

)1(v*
m 







        (73) 

 

The above shock boundary conditions are 

substitute into Eqs. (69) and (70), respectively 

to solve 
mA  and

mB : 

)(XNA mmm          (74) 

)(YQB mmm          (75) 

 

where: 
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]
V

)(v
)(K

V

)(u
)(K

m1
[

G

)m1(
N

*
m

mn

2

**
m

mn
m

m

m




















      (76) 

m

mn

mn
2

**
m

mmn

m N
)(K

)(I

V

)(u

G)(K

1
Q















      (77) 

 

 

Substituting the surface boundary condition 

(73) into Eq. (70), the value of shock 

perturbation parameter can be obtained as: 

 










V

)1(v

)B)(KA)(I(

m1
G

*
m

mmnmmnm

m
      (78) 

 

To achieve a complete solution for flow over 

a conical body at small angle of attack another 

perturbation expansion should be written for 

flow variables in which   (angle of attack) is 

the perturbation factor,  

 

)(ocos)(u)(u),,(u 2
2o        

(79) 

)(ocos)(v)(v),,(v 2
2o        

(80) 

)(osin)(w),,(w 2
2   

      (81) 

)(ocos)(p)(p),,(p 2
2o        

(82) 

)(ocos)()(),,( 2
2o         

(83) 

)(ocos)(s)(s),,(s 2
2o        

(84) 

 

The parameters with index 2 are related with 

flow over circular cone with angle of attack. In 

this case the equation of the body is: 

 

)(ocos 2
c          

(85) 

 

Substitute the perturbation expansions with 

respect to   in the governing equations, and 

separate zero and first order terms in , two 

systems of equations are obtained. The 

boundary conditions for first order can be 

obtained as: 

 

 )1(G1sin)(u o22         
(86) 

   sing1cos)('vG)(u 22oo22      
(87) 

0)(v2           
(88) 

 

Where G2 represents shock perturbation 

parameter for flow passes with angle of attack 

on circular cone. The second system of 

equations leads to the following ODE with 

respect to u2. 

 



















2

o2
2222

sin

)(HF

sin

1
2ucotuu

      

(89) 

 

For small angles the above ODE has a 

solution of: 

 

RG
Z

1
GZG

)z(u
1312112

1 


       

(90) 

dZ

dR
G

Z

1
GG

)Z(v
1321211

1 


       

(91) 

where: 

)
2

1

1

2
(g

1

1

2

1
G

22221












        (92) 

J
4

)g1(
)

1

2

2

1
(g)

1

2

2

1
(G

2
2

2

2

2

22













       (93) 









N

JFJ)g1(
G 2

3
2

23
        (94) 

1

z
ln

z4

1z2

1

1z

4

3
1R

2

2

2

2
































        (95) 

 

In which: 

 12    ,  12  zzz ,      /z  

and: 

)12)(1(

2
N

22

2






       

(96) 

 
)12)(1(

ln)1(12
J

22

22




        (97) 

3
1

1

N)g1(
F






         
(98) 

 

5. Calculating lift and drag forces  

For a finite length of cone, the pressure force 

as shown in Fig. (4), is given by: 
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 
s

cC dsn̂)(pF


        (99) 




 d
cos

dz
tanzddrRds      (100) 

where, R, equals to the radius of a circle. 

 

For pressure coefficient the perturbation 

expansion is defined by: 

 

 

),,(o

cosC
~

ncos)
l

r
(CCC

22

1p
m

pm0pp



     (101) 

 

The expressions for lift and drag forces are:  

 

  ddzcostanCV2/1dN p
2     (102) 

  dzdztanCV2/1dD 2
p

2      (103) 






tanC2

C
~

D

L

0p

1p        (104) 

 

For comparing the lift to drag ratio in 

different cross sections first the relation 

between δ and the shape of cross section should 

be found. In rectangle Cartesian coordinates, an 

elliptic cone is represented by: 

 

l

z

b

y

a

x 2

2

2

2

2

        (105) 

 

where Cartesian to spherical transforms are: 

 

 cossinrx        (106) 

 sinsinry        (107)

  cosrz

       

(108) 

Substituting Eqs. (106) to (108) into Eq. (105) 

the following relation is obtained: 

 






2cose1

tan
tan m

      

(109) 

where; 

e1b
ba

ab2
tan

22m 




     

(110) 

22

22

ab

ab
e






       

(111) 

 

In the left hand side of Eq. (105) the Taylor 

expansion about 0  is written and in right 

hand side the Fourier series are substituted. For 

different values of e calculations shows that 

Fourier series coefficients except for a0 and a2 

are negligible, so the following equation is 

achieved: 

 













2cosa
2

a

tan2cos)tan1(tan

2
0

m
2

     

(112) 

where; 








 d

2cose1

11
a0

      

(113) 












 d

2cose1

2cos1
a 2

      

(114) 

 

It is obvious that for a circular cone, e=0 and: 

 

b  and 0

      

(115) 

 

Also elliptical cone with longitudinal curvature 

can be written as: 

 

l

z

b

y

a

x
2

2

2

2

        (116) 

 

In spherical coordinate it is written as:  

 

)2cose1(l

tan
sintanr m

2




       (117) 

 

And using Taylor expansion and Fourier series, 

the following relation is obtained: 

 

m
2

2
0

2
m

2

2m

tan)2cosa
2

a
(

)cose1(l

tan

))tan2(sin2cos)
l

r
(sin(tanr








    (118) 
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Comparing the two sides of Eq. (118) the 

following expressions are achieved: 

 

 tansinr
2

ao        (119) 

o
m

o
m2

22

a)
l

r
(

2/a)
l

r
(8aa

tan






     (120) 

 

In rectangle Cartesian coordinates, a cone 

with squircle cross section is represented by: 

 

4

4

4

4

4

R
z

y

z

x


       

(121) 

 

Substitution of the Cartesian to spherical 

transforms in Eq. (121) gives: 

 

4
1c

)4cos3(

R2
tan




      

(122) 

  

Using Taylor expansion about 0

 

for the 

left hand side of Eq. (122) and writing Fourier 

series for the right hand side, the following 

relation is obtained: 

 

 4cosa
2

a
4cos)tan1(tan 4

o2

    

(123) 

 

In comparison with a0, a4 the other coefficients 

of the Fourier series are much smaller and 

hence negligible. Comparing the two sides of 

Eq. (123) the following relations are achieved: 

 

2

a
tan o

       

(124) 

2o

4

)
2

a
(1

a




       

(125) 








 d

)4cos3(

R21
a

4
1o

     

(126) 











 d

)4cos3(

R2
4cos

1
a

4
14

     

(127) 

 

In rectangle Cartesian coordinates, a cone 

with squircle cross section and longitudinal 

curvature can be represented by: 

 

l

z

R

y

R

x
4

4

4

4

        (128) 

  

Substitution of the Cartesian to spherical 

transforms in Eq. (128) gives: 

 

)4cos)
l

r
(1(cos

)4cos)
l

r
(1(sin

cos

sin

m

m4

C

C
4








     (129) 

 

Using Taylor expansion about ε=0

 

for the 

left hand side of Eq. (129) and writing Fourier 

series for the right hand side, the following 

relations is obtained: 

 

 
A2

A16aa
tan

22
44 

 , 
2

a
)

l

r
(A 0m     (130) 




 



d

)4cos3(l

R4
a

4

0
      (131) 







 




d

)4cos3(l

4cosR4
a

4

4
      (132) 

 

6. Results and discussion  

This analysis accounts the effects of cross 

section and longitudinal curvature by means of 

parameters that were named by n and m 

respectively. The aim of the present work is to 

improve lift to drag ratio by changing the cross 

section of the conical body. Using Fourier 

series a relation between   and shape of the 

cross section of the body is obtained for each 

case. Figs. (5) and (6) represent the zero and 

first order of pressure coefficients as a function 

of k (k=M). Figures show these coefficients 

are constant in hypersonic limit. Fig. (7) shows 

the lift to drag ratio for different cross sections 

as a function of k in =4 ( is attack angle). A 

careful examination of Fig. (7) it reveals that 

the longitudinal curvature effect increases lift to 
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drag ratio, also changing cross section from a 

circle to an ellipse and then to a squircle 

increases this ratio. For k  0, this ratio tends 

to zero, also as k , a hypersonic limit is 

achieved. Increasing in attack angle can be seen 

in Fig. (8). The figure presents with increasing 

of attack angle the lift to drag ratio increases. 

Fig. (9) shows lift to drag ratio for different 

longitudinal curvature. It can be shown with 

increasing of m the longitudinal curvature (as 

shown in Fig. (3)) and then this ratio increases. 
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Fig. (1): The spherical coordinate of a cone. 

 
 

Fig. (2): Longitudinal curvature in m=1, 2,. 
 

 

 
 

Fig. (3): Circular, elliptical and squircle cross 
section. 

 

 
 

Fig.(4): Schematic of circular cone. 
 

 
 

Fig. (5) Cpo/δ
2 versus kδ. 
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Fig. (6): Cp1/δ versus kδ. 
 

 
 
 
 
 

Fig.(7): Lift to drag ratio of k  for different cross sections in =4. 
 
 
 
 
 
 



14 Sheikhy,N. and  Baradaran Rahimi, A. 
 

 
 
 

Fig.(8): lift to drag ratio of k  for different cross sections in =8. 
 
 

 
 

Fig. (9): Lift to drag ratio of k for m =1, 2 (wlc: with longitudinal curvature). 
 
 
 

 


